Kamis, 12 Maret 2015

Karakteristik Business Intelligence

Sistem Business Intelligence yang baik mempunyai berbagai karakteristik (Stevans,2008), diantaranya :
  1. Tujuan utama
    Seluruh sistem komputer mempunyai tujuan utama bagi seluruh pengguna sesuai dengan kebutuhan penguna masing-masing.
  2. Ketersediaan data yang relevan
    Masalah ketersediaan data merupakan poin yang paling penting dalam sistem business intelligence yang efektif. Dalam proses pembuat keputusan sering terjadi penyampaian informasi yang tidak lengkap atau bahkan yang tidak sebenarnya. Namun dengan dukungan BI, ketersediaan data yang relevan dapat diatasis ehingga dapat menyuguhkan data-data yang relevan.
  3. Kemampuan
    Dalam hal ini terdapat kemampuan BI yang paling utama yaitu dapat memberikan kemudahan akses untuk informasi terbaru dari bisnis yang berjalan serta peluang yang diproyeksikan, selain itu Bi dapat memenuhi kapabilitas untuk melakukan analisis dan memenuhi permintaan pengguna
  4. Struktur Pendukung
    Dalam BI, sistem pendukung didalamnya tidak hanya terdiri dari hardware dan software, namun juga terdiri dari suatu proses yang dibuat untuk pengambilan keputusan yang lebih baik serta untuk menentukan strategi untuk misi dan tujuan ked
    epan.

siness intelligence, biasa disebut BI adalah teknologi yang menggunakan komputer yang berguna untuk mencari, menggali, dan menganalisis informasi dari data bisnis misalnya hasil penjualan suatu produk atau pendapatan/pengeluaran salah satu anak perusahaan.
         Business Intelligence Software (BI) secara singkat juga dikenal sebagai dashboard. Ini karena secara umum BI berfungsi seperti halnya dashboard pada kendaraan. BI memberikan metrik (ukuran-ukuran) yang menentukan performa kendaraan (organisasi). BI juga memberikan informasi kondisi internal, seperti halnya suhu pada kendaraan. Dan BI juga memberikan sinyal-sinyal pada pengemudi bila terjadi kesalahan pada kendaraan, seperti bila bensin akan habis pada kendaraan. Semuanya berguna bagi pengemudi agar mampu mengendalikan kendaraannya dengan lebih baik dan mampu membuat keputusan yang tepat dengan lebih cepat.

 
Pada prakteknya, BI akan berfungsi sebagai analis, penghitung scorecard,
sekaligus memberikan rekomendasi pada user terhadap tindakan yang sebaiknya diambil. Dengan menjalankan fungsi dashboard, user BI akan mengenali potensi ketidakberesan pada perusahaan sekaligus dengan penyebabnya sebelum hal tersebut berkembang menjadi masalah yang besar. BI akan berfungsi memberikan advance alarm, memberikan informasi trend dan melakukan benchmark.


Komponen Dasar BI

Pada dasarnya komponen BI mencakup, gathering, storing, analysing dan providing access to data.

bi basic components
Contoh Masalah dalam Bisnis Intelligence
Berbagai macam contoh Masalah yang bisa diatasi hanya dengan menggunakan Bisnis Intelligence antara lain sebagai berikut:
a. Manager Promosi ingin menganalisis pengaruh tiap jenis media iklan di koran, majalah, dan TV terhadap penjualan produk.
b. Manager HRD dapat menganalisis pengaruh kenaikan gaji terhadap peningkatan produktivitas pekerja di lantai pabrik.
c. Manajer Penjualan ingin mengetahui pengaruh musim dan kepadatan penduduk terhadap penjualan es krim di tiap daerah


Keuntungan Bisnis Intelligence:
Ada 7 keunggulan utama BI yang akan memberikan value bagi perusahaan adalah sebagai berikut:
a. Konsolidasi informasi Dengan BI dijalankan di dalam perusahaan, data akan diolah dalam satu platform dan disebarkan dalam bentuk informasi yang berguna (meaningful) ke seluruh organisasi. Dengan ketiadaan information assymmetry, kolaborasi dan konsolidasi di dalam perusahaan dapat diperkuat. Dengan konsolidasi, maka dapat dimungkinkan pembuatan cross-functional dan corporate-wide reports. Meskipun harus diakui, benefit ini juga mampu disediakan oleh software ERP.



b. In-depth reporting Software Business Process Management (BPM) memang mampu memberikan report dan analisis, namun cukup sederhana dan hanya bertolak pada kondisi intern. Sedangkan BI mampu menyediakan informasi untuk isu-isu bisnis yang lebih besar pada level strategis.

c. Customized Graphic User Interface (GUI) Beberapa ERP memang berusaha membuat tampilan GUI yang user friendly, namun
BI melangkah lebih jauh dengan menyediakan fasilitas kustomisasi GUI.
Sehingga tampilan GUI jauh dari kesan teknis dan memberikan view of business sesuai dengan keinginan masing-masing user.

d.Sedikit masalah teknis Ini karena -pertama- sifatnya yang user friendly meminimasi kemungkinan operating error dari user, dan -kedua- BI hanya merupakan software pada layer teratas (information processing) dan bukan business process management. 




















e. Biaya pengadaan rendah Karena BI hanya software yang bekerja pada layer teratas dari pengolahan informasi, harga software-nya tidak semahal ERP. Biaya pengadaannya pun menjadi lebih murah dibandingkan ERP. Apalagi saat ini banyak ditunjang juga oleh produk BI yang open source.

f. Flexible databank BI membuka kemungkinan untuk berkolaborasi dengan ERP sebagai pemasok databank yang akan diolah menjadi reports dan scorecard, namun BI juga dapat bekerja dari databank yang dibuat terpisah. BI pun menjadi terbuka untuk digunakan oleh analis profesional dan peneliti, yang data olahannya bersifat sekunder. 
g. Responsiveness Sifat BI lain yang tidak dimiliki oleh ERP adalah dalam hal kecepatan (responsiveness). Misalnya pada penghitungan service level sebagai salah satu Key Performance Indicator (KPI). Fungsi BI akan memberikan peringatan kepada user sebelum batas bawah dalam service level (lower limit) terlampaui. Akibatnya masalah bisa ditangani sebelum benar-benar muncul ke permukaan. Salah satu contoh padResponsivenessa industri kesehatan, penggunaan BI berjasa mencegah penyebaran suatu penyakit/wabah secara luas (outbreak). Nama-nama vendor BI memang masih asing di Indonesia
Arsitektur Sistem Business Intelligence
      Menurut Inmon (2002) yang dikutip oleh Niu (2009), pada umumnya sistem business intelligence terdiri dari empat level komponen dan modul manajemen metadata. Arsitektur general dari sistem business intelligence terlampir pada gambar 1. Komponen-komponen saling berinteraksi untuk memfasilitasi fungsi dasar business intelligence: mengekstrak data dari sistem operasional perusahaan, menyimpan data yang sudah diekstrak kedalam datawarehouse, dan menarik data yang disimpan untuk berbagai aplikasi analisis bisnis.
  • Level sistem operasional.
      Sebagai sumber data dari sistem business intelligence, sistem operasional bisnis pada umumnya menggunakan sistem online transaction processing (OLTP) untuk mendukung kegiatan bisnis sehari-hari. Pada umumnya sistem OLTP adalah sistem penerimaan order pelanggan, sistem keuangan, dan sistem sumber daya manusia.
  • Level akuisisi data.
      Pada level ini adalah komponen pra proses terdiri dari 3 tahapan yaitu : ekstraksi, transformasi, dan memasukkan (ETL). Sebuah perusahaan memiliki beberapa sistem OLTP yang menghasilkan jumlah data yang sangat besar. Data tersebut pertama kali diekstrak dari sistem OLTP oleh proses ETL dan kemudian ditransformasi sesuai dengan aturan transformasi. Apabila data yang sudah ditransformasi  maka data tersebut dimasukkan ke data warehouse. ETL merupakan komponen dasar dari sistem business intelligence karena kualitas data dari komponen lain tergantung pada proses ETL. Dalam perancangan dan pengembangan ETL, kualitas data, fleksibilitas sistem dan kecepatan proses adalah perhatian utama.
  • Level penyimpanan data.
       Data yang telah diproses oleh komponen ETL disimpan dalam data warehouse dimana biasanya diimplementasikan dengan menggunakan tradisional sistem manajemen database (RDMS). RDMS didesain untuk mendukung proses transaksi, sangat bertolak belakang dengan data warehouse berfokus kepada subyek, varian waktu dan disimpan secara terintegrasi. Skema star dan snowflake merupakan skema data warehouse yang paling populer. Apapun skema yang dipakai, tipe tabel pada data warehouse adalah fact tables dan dimension tables.
  • Level analitis.
       Berdasarkan data warehouse, berbagai macam aplikasi analitikal telah dikembangkan. Sistem business intelligence mendukung 2 tipe dasar dalam fungsi analitikal: pelaporan dan online analytical processing (OLAP). Fungsi pelaporan menyediakan manajer berbagai jenis laporan bisnis seperti laporan penjualan, laporan produk, dan laporan sumber daya manusia. Laporan dihasilkan dari menjalankan queries kedalam data warehouse. Data warehouse queries pada umumnya sudah didefinisikan oleh pengembang data warehouse. Laporan yang dihasilkan oleh sistem business intelligence biasanya memiliki format yang statis dan berisi tipe data yang pasti.
Analitikal business intelligence yang paling menjanjikan adalah OLAP. Menurut Codd et al (1993) yang dikutip oleh Niu (2009), OLAP memungkinkan manajer untuk secara efisien mendalami data bisnis dari berbagai dimensi analisis melalui operasi pengirisan, pemotongan dan pendalaman. Sebuah analisis dimensi merupakan perspektif melalui bagaimana data tersebut dipresentasikan, sebagai contoh: tipe produk, lokasi penjualan, waktu dan pelanggan. dibandingkan dengan fungsi laporan, OLAP mendukung analisis data sesuai dengan kebutuhan. OLAP merupakan model data multidimensional yang dikenal sebagai skema snowflake dan star. Sebagai tambahan dari laporan dan OLAP, terdapat banyak tipe analitikal yang lain yang dapat dibuat berdasarkan sistem data warehouse seperti data mining, executive dashboards, customer relationship management, dan business performance management.
  • Manajemen metadata.
       Metadata merupakan data khusus mengenai data lain seperti sumber data, penyimpanan data warehouse, peraturan bisnis, otorisasi akses,        dan bagaimana data diekstrak dan ditransformasi. Metadata sangat penting dalam menghasilkan informasi yang akurat, konsisten dan pemeliharaan sistem. Manajemen metadata mempengaruhi semua proses dari perancangan, pengembangan, pengujian, penyebaran dan penggunaan sistem business intelligence.
Picture17

Sabtu, 21 Februari 2015

Business Intelligence & Data Warehouse

              Business Intelligence menjelaskan tentang suatu konsep dan metode bagaimana cara atau prosedur untuk meningkatkan kualitas pengambilan keputusan bisnis berdasarkan sistem yang berbasiskan data-data dari berbagai data sumber. Dimana dalam proses business intelligence melakukan kegiatan pengambilan jumlah data yang besar, kemudian melakukan proses menganalisis data, dan dilanjutkan dengan menyajikan serta melaporkan hasil dari proses.

             Business Intelligence dalam kaitannya management support terhadap data terstruktur dan data tidak terstruktur, merupakan proses mengintegrasikan dan menyatukan komponen-komponen untuk menangani data-data pada business intelligence framework. Pendekatan tersebut akan dilakukan dengan tiga jenis pendekatan yaitu mengintegrasikan data yang terstuktur dan tidak terstruktur, melakukan analisis koleksi data dan melakukan pendistribusikan hasil analisis ke dalam bentuk yang sesuai dengan kebutuhan. Pendekatan tersebut diatas dapat memanfaatkan tiga lapisan business intelligence framework berupa data layer, logic layer dan access layer.


intelligence. Sebuah sistem business intelligence dengan kata lain merupakan kombinasi data warehouse dan sistem pendukung keputusan. Hal ini menjelaskan bagaimana data dari sumber-sumber yang berbeda dapat diekstraksi dan disimpan dan selanjutnya diambil untuk dianalisis.Kegiatan utama business intelligence meliputi pengumpulan, menyiapkan dan menganalisa data. Dalam proses business intelligence data yang digunakan harus berkualitas tinggi, dengan cara memperolehnya dari berbagai sumber data yang dikumpulkan, kemudian diubah, lalu dibersihkan, selanjutnya dimuat dan disimpan dalam basisdata data warehouse.

Gambar  Pemahaman Dasar Sistem Business Intelligence
Jenis Business Intelligence
Menurut Turban, dkk (2007), business intelligence terbagi ke dalam lima jenis atau kategori yaitu :
1.        Enterprise Reporting yakni digunakan untuk menghasilkan laporan-laporan statis yang didistribusikan ke banyak orang. Jenis laporan ini sangat sesuai untuk laporan operasional dan dashboard.
2.        Cube Analysis yakni digunakan untuk menyediakan analisis OLTP multidimensional yang ditujukan untuk manajer bisnis dalam lingkungan terbatas.
3.        Ad Hoc Query and Analysis yakni digunakan untuk memberikan akses kepada user agar dapat melakukan query pada basis data, dan menggali informasi sampai pada tingkat paling dasar dari informasi transaksional. Query ini berfungsi untuk mengeksplor informasi yang dilakukan oleh user.
4.        Statistical Analysis andData Mining yakni digunakan untuk melakukan analisis prediksi atau menentukan korelasi sebab akibat diantara dua matrik.
5.        Delivery Report and Alert yakni digunakan secara proaktif untuk mengirimkan laporan secara lengkap atau memberikan peringatan kepada populasi user yang besar atau banyak.

    Data Warehouse
Data Warehouse atau disingkat DW merupakan basisdata relasional yang didesain lebih kepada querydan analisa dari pada proses transaksi, dan biasanya mengandung history data dari proses transaksi dan bisa juga data dari sumber lainnya. Data Warehouse dapat juga dikatakan sebagai tempat penyimpanan ringkasan dari data historis yang seringkali diambil dari basisdata terpisah departemen, organisasi atau perusahaan (Kimball dan Caserta, 2004).
 Menurut Inmon (2002) bahwa data warehousemerupakan koleksi data yang mempunyai sifat berorientasi subyek, terintegrasi, time-variant, dan bersifat tetap dari koleksi data dalam mendukung proses pengambilan keputusan management, proses ini subject-oriented, terintegrasi, waktu yang bervariasi dan permanen.
Tujuan utama dari pembuatan data warehouse merupakan untuk menyatukan data yang beragam ke dalam sebuah tempat penyimpanan dimana pengguna dapat dengan mudah menjalankan query, menghasilkan laporan, dan melakukan analisis. Salah satu keuntungan yang diperoleh dari keberadaan data warehouseadalah dapat meningkatkan efektifitas pembuatan keputusan.
Dari definisi yang dijelaskan diatas, dapat disimpulkan bahwa data warehouse merupakan basisdata yang saling berinteraksi dan dapat digunakan untuk query dan analisis, bersifat orientasi subyek, terintegrasi, time-variant, tidak berubah (adhoc) yang nantinya digunakan dalam membantu pengambilan keputusan organisasi atau perusahaan oleh pihak pengambil keputusan.
Berikut ini merupakan hal-hal yang berkaitan dengan data warehouse dalam penerapan pada sistem business intelligence (Inmon, 2002) yaitu :
1.        Data Mart yakni merupakan suatu bagian pada data warehouse yang mendukung pembuatan laporan dan analisa data pada suatu unit, bagian atau operasi pada suatu perusahaan.
2.        On-Line Analytical Processing yakni merupakan suatu pemrosesan basisdata yang menggunakan tabel fakta dan dimensi untuk dapat menampilkan berbagai macam bentuk laporan, analisis, query dari data yang berukuran besar.
3.        On-Line Transaction Processing yakni merupakan suatu pemrosesan yang menyimpan data mengenai kegiatan operasional transaksi sehari-hari.
4.        Dimension Table yakni merupakan tabel yang berisikan kategori dengan ringkasan data detail yang dapat dilaporkan. Seperti laporan laba pada tabel fakta dapat dilaporkan sebagai dimensi waktu yang berupa perbulan, perkwartal dan pertahun.
5.        Fact Table yakni merupakan tabel yang umumnya mengandung angka dan data history dimana key (kunci) yang dihasilkan sangat unik, karena key tersebut terdiri dari foreignkey(kunci asing) yang merupakan primarykey (kunci utama) dari beberapa dimensi tabel yang berhubungan.
6.        Decision Support System yakni merupakan sistem yang menyediakan informasi kepada pengguna yang menjelaskan bagaimana sistem ini dapat menganalisa situasi dan mendukung suatu keputusan yang baik.

Tugas Data Warehouse
Ada empat tugas yang bisa dilakukan oleh data warehouse (Kimball dan Caserta, 2004) yaitu :
1.        Pembuatan Laporan yakni proses pembuatan laporan merupakan salah satu kegunaan data warehouse yang paling umum dilakukan. Dengan menggunakan query sederhana didapatkan laporan perhari, perbulan, pertahun atau jangka waktu kapan pun yang diinginkan.
2.        OLAP yakni dengan adanya data warehouse, semua informasi baik detail maupun hasil summary yang dibutuhkan dalam proses analisa mudah di dapat. OLAP mendayagunakan konsep multidimensional dan memungkinkan para pemakai menganalisa data sampai mendetail, tanpa mengetikkan satupun perintah query.
3.        Data Mining yakni merupakan proses untuk menggali pengetahuan dan informasi baru dari data yang berjumlah banyak pada data warehouse, dengan menggunakan kecerdasan buatan (artificial intelligence), statistik dan matematika. Beberapa solusi yang diberikan data mining antara lain yakni :
a.         Menebak target pasar diaman data mining dapat mengelompokkan (clustering) model-model pembeli dan melakukan klasifikasi terhadap setiap pembeli dan melakukan klasifikasi terhadap setiap pemebeli sesuai dengan karakteristik yang diinginkan.
b.         Melihat pola beli dari waktu ke waktu dimana data mining dapat digunakan untuk melihat pola beli dari waktu ke waktu.
c.         Cross-Market Analysis dimana data mining dapat dimanfaatkan untuk melihat hubungan antara satu produk dengan produk lainnya.
d.        Profil pelanggan dimana data mining bisa membantu pengguna untuk melihat profil pembeli sehingga dapat diketahui kelompok pembeli tertentu cenderung kepada suatu produk apa saja.
e.         Informasi summary dimana data mining dapat membuat laporan summary yang bersifat multidimensi dan dilengkapi dengan informasi statistik lainnya.
4.        Proses Informasi Eksekutif yakni data warehouse dapat membuat ringkasan informasi yang penting dengan tujuan membuat keputusan bisnis, tanpa harus menjelajahi keseluruhan data. Dengan menggunakan data warehouse segala laporan telah diringkas dan dapat pula mengetahui segala rinciannya secara lengkap, sehingga mempermudah proses pengambilan keputusan.

KESIMPULAN :
Kalau menurut pemahaman saya, secara sederhana maka datawarehouse 
merupakan bagian dari BI dan BI adalah bagian dari EIS. Jadi, EIS untuk 
mencapai tujuannya memerlukan cara dan BI adalah salah satu solusinya. 
BI memerlukan datasource dan datawarehouse adalah salah satu pilihannya. 
BI sendiri akan membutuhkan datawarehouse yang bisanya untuk melakukan 
ad-hoc reporting, OLAP analisis dan data mining.

Selasa, 17 Februari 2015

Definisi Business Intelligence menurut para ahli


Istilah Business Intelligence (BI) pertama kali didengungkan pada tahun 1958 oleh seorang peneliti dari IBM yang bernama Hans Peter Luhn. Beliau mendefinisikan istilah intelligence sebagai “Kemampuan dalam mengerti dan memahami suatu hubungan timbal balik antara fakta-fakta yang disajikan sedemikian rupa menjadi suatu landasan dalam bertindak untuk mencapai tujuan yang dikehendaki”.

Pada tahun 1989 dalam sebuah artikel terbitan Gartner, Howard Dresner menggunakan istilah Business Intelligence (BI) . Dia menggambarkan istilah tersebut sebagai seperangkat konsep dan metode yang berguna untuk meningkatkan kemampuan pembuatan keputusan dengan bantuan sistem yang berbasiskan fakta atau realita yang terjadi.

Menurut Nadia Branon, Business Intelligence merupakan kategori yang umum digunakan untuk aplikasi dan teknologi untuk mengumpulkan, menyimpan, menganalisa, dan menyediakan akses pada data agar dapat membantu pengguna dari kalangan perusahaan agar dapat mengambil keputusan dengan lebih baik dan tepat.

Menurut DJ Powers (2002), Business Intellegence menjelaskan tentang suatu konsep dan metode untuk meningkatkan kualitas pengambilan keputusan bisnis berdasarkan sistem dan berbasis data. BI seringkali disamakan dengan briefing books, report dan query tools, dan seistem informasi eksekutif.

BI merupakan sistem pendukung pengambilan keputusan yang berbasiskan data-data. Menurut David (2000), Business Intellegence adalah suatu cara untuk mengumpulkan, menyimpan, mengorganisasikan, membentuk ulang, meringkas data serta menyediakan informasi baik berupa data aktifitas bisnis internal perusahaan termasuk aktifitas bisnis pesaing yang mudah diakses serta dianalisis untuk berbagai kegiatan manajemen


Menurut Stefan Adhi Nugroho (2008), Bussiness Intelegence adalah rangkainan aplikasi dan teknologi untuk mengumpulkan, menyimpan dan menganalisis dan menyuguhkan akses data untuk membantu petinggi perusahaan dalam mengambil keputusan

Senin, 16 Februari 2015

My Profile

Nama          : M. Liwail Hamdi
Nim            : 1012465418
Jurusan       : Sistem informasi
Konsen       : Business intelligence
TTL            : Tangerang, 16 Juli 1992
Alamat       : Jl. Raya Pakuhaji. Kec Pakuhaji. Des Pakualam. Kab Tangerang Prov Banten
No Hp        : 089602277067
email          : liwail.hamdi@raharja.info
                   : bloliwail1992@gmail.com
Konsultasi  : Business Intelligence
Dosen        : Oleh Sholeh, M.Si
Penelitian    :  - definisi Business Intelligence dari 5 sumber
                         - perbedaan Business Intelligence dengan Data warehouse.
                         -  apa itu Business Intelligence Portal dan karakteristiknya.